PRODUCT CODE: ET1611-68

Recombinant Phospho Tau (S396) Monoclonal Antibody (ET1611-68)

  • Recombinant

Applications

  • WB

  • ICC

  • IF

  • IHC-P

REACTIVITY

  • Human

  • Mouse

  • Rat

ICC staining of Phospho-Tau(S396) in N2A cells (green). Formalin fixed cells were permeabilized with 0.1% Triton X-100 in TBS for 10 minutes at room temperature and blocked with 1% Blocker BSA for 15 minutes at room temperature. Cells were probed with the primary antibody (ET1611-68, 1/50) for 1 hour at room temperature, washed with PBS. Alexa Fluor®488 Goat anti-Rabbit IgG was used as the secondary antibody at 1/1,000 dilution. The nuclear counter stain is DAPI (blue).
  • ICC staining of Phospho-Tau(S396) in N2A cells (green). Formalin fixed cells were permeabilized with 0.1% Triton X-100 in TBS for 10 minutes at room temperature and blocked with 1% Blocker BSA for 15 minutes at room temperature. Cells were probed with the primary antibody (ET1611-68, 1/50) for 1 hour at room temperature, washed with PBS. Alexa Fluor®488 Goat anti-Rabbit IgG was used as the secondary antibody at 1/1,000 dilution. The nuclear counter stain is DAPI (blue).
  • ICC staining of Phospho-Tau(S396) in PC-12 cells (green). Formalin fixed cells were permeabilized with 0.1% Triton X-100 in TBS for 10 minutes at room temperature and blocked with 1% Blocker BSA for 15 minutes at room temperature. Cells were probed with the primary antibody (ET1611-68, 1/50) for 1 hour at room temperature, washed with PBS. Alexa Fluor®488 Goat anti-Rabbit IgG was used as the secondary antibody at 1/1,000 dilution. The nuclear counter stain is DAPI (blue).
  • Immunohistochemical analysis of paraffin-embedded rat brain tissue using anti-Phospho-Tau(S396) antibody. The section was pre-treated using heat mediated antigen retrieval with Tris-EDTA buffer (pH 8.0-8.4) for 20 minutes.The tissues were blocked in 5% BSA for 30 minutes at room temperature, washed with ddH2O and PBS, and then probed with the primary antibody (ET1611-68, 1/50) for 30 minutes at room temperature. The detection was performed using an HRP conjugated compact polymer system. DAB was used as the chromogen. Tissues were counterstained with hematoxylin and mounted with DPX.
  • Immunohistochemical analysis of paraffin-embedded mouse brain tissue using anti-Phospho-Tau(S396) antibody. The section was pre-treated using heat mediated antigen retrieval with Tris-EDTA buffer (pH 8.0-8.4) for 20 minutes.The tissues were blocked in 5% BSA for 30 minutes at room temperature, washed with ddH2O and PBS, and then probed with the primary antibody (ET1611-68, 1/50) for 30 minutes at room temperature. The detection was performed using an HRP conjugated compact polymer system. DAB was used as the chromogen. Tissues were counterstained with hematoxylin and mounted with DPX.
ICC staining of Phospho-Tau(S396) in N2A cells (green). Formalin fixed cells were permeabilized with 0.1% Triton X-100 in TBS for 10 minutes at room temperature and blocked with 1% Blocker BSA for 15 minutes at room temperature. Cells were probed with the primary antibody (ET1611-68, 1/50) for 1 hour at room temperature, washed with PBS. Alexa Fluor®488 Goat anti-Rabbit IgG was used as the secondary antibody at 1/1,000 dilution. The nuclear counter stain is DAPI (blue).

Applications

  • WB

  • ICC

  • IF

  • IHC-P

REACTIVITY

  • Human

  • Mouse

  • Rat

SPECIFICATIONS

Product Type

Recombinant Rabbit monoclonal primary

Product Name

Recombinant Phospho Tau (S396) Monoclonal Antibody (ET1611-68)

Immunogen

Synthetic phospho-peptide corresponding to residues surrounding ser396 of human tau.

Host

Rabbit

Modification

Phospho

Modification Site

S396

Positive Control

N2A, PC-12, rat brain tissue, mouse brain tissue.

Conjugation

Unconjugated

Clonality

Monoclonal

Clone Number

SN62-09

PROPERTIES

Form

Liquid

Storage Condition

Store at +4C after thawing. Aliquot store at -20C or -80C. Avoid repeated freeze / thaw cycles.

Storage Buffer

1*TBS (pH7.4), 0.05% BSA, 40% Glycerol. Preservative: 0.05% Sodium Azide.

Concentration

1 ug/ul

PURIFICATION

Protein A affinity purified.

MOLECULAR WEIGHT

80 kDa

Isotype

IgG

APPLICATION DILUTION

  • WB

  • 1:500-1:1,000

  • ICC/IF

  • 1:100-1:500

  • IHC-P

  • 1:50-1:200

TARGET

UNIPROT #

PROTEIN NAME

Phospho-Tau(S396)

SYNONYMS

AI413597 antibody; AW045860 antibody; DDPAC antibody; FLJ31424 antibody; FTDP 17 antibody; G protein beta1/gamma2 subunit interacting factor 1 antibody; MAPT antibody; MAPTL antibody; MGC134287 antibody; MGC138549 antibody; MGC156663 antibody; Microtubule associated protein tau antibody; Microtubule associated protein tau isoform 4 antibody; Microtubule-associated protein tau antibody; MSTD antibody; Mtapt antibody; MTBT1 antibody; MTBT2 antibody; Neurofibrillary tangle protein antibody; Paired helical filament tau antibody; Paired helical filament-tau antibody; PHF tau antibody; PHF-tau antibody; PPND antibody; PPP1R103 antibody; Protein phosphatase 1, regulatory subunit 103 antibody; pTau antibody; RNPTAU antibody; TAU antibody; TAU_HUMAN antibody; Tauopathy and respiratory failure, included antibody

TISSUE SPECIFICITY

Expressed in neurons. Isoform PNS-tau is expressed in the peripheral nervous system while the others are expressed in the central nervous system.

DEVELOPMENTAL STAGE

Four-repeat (type II) TAU/MAPT is expressed in an adult-specific manner and is not found in fetal brain, whereas three-repeat (type I) TAU/MAPT is found in both adult and fetal brain.

POST-TRANSLATIONAL MODIFICATION

Phosphorylation at serine and threonine residues in S-P or T-P motifs by proline-directed protein kinases (PDPK1, CDK1, CDK5, GSK3, MAPK) (only 2-3 sites per protein in interphase, seven-fold increase in mitosis, and in the form associated with paired helical filaments (PHF-tau)), and at serine residues in K-X-G-S motifs by MAP/microtubule affinity-regulating kinase (MARK1, MARK2, MARK3 or MARK4), causing detachment from microtubules, and their disassembly. Phosphorylation decreases with age. Phosphorylation within tau/MAP's repeat domain or in flanking regions seems to reduce tau/MAP's interaction with, respectively, microtubules or plasma membrane components. Phosphorylation on Ser-610, Ser-622, Ser-641 and Ser-673 in several isoforms during mitosis. Phosphorylation at Ser-548 by GSK3B reduces ability to bind and stabilize microtubules. Phosphorylation at Ser-579 by BRSK1 and BRSK2 in neurons affects ability to bind microtubules and plays a role in neuron polarization. Phosphorylated at Ser-554, Ser-579, Ser-602, Ser-606 and Ser-669 by PHK. Phosphorylation at Ser-214 by SGK1 mediates microtubule depolymerization and neurite formation in hippocampal neurons. There is a reciprocal down-regulation of phosphorylation and O-GlcNAcylation. Phosphorylation on Ser-717 completely abolishes the O-GlcNAcylation on this site, while phosphorylation on Ser-713 and Ser-721 reduces glycosylation by a factor of 2 and 4 respectively. Phosphorylation on Ser-721 is reduced by about 41.5% by GlcNAcylation on Ser-717. Dephosphorylated at several serine and threonine residues by the serine/threonine phosphatase PPP5C.; Polyubiquitinated. Requires functional TRAF6 and may provoke SQSTM1-dependent degradation by the proteasome (By similarity). PHF-tau can be modified by three different forms of polyubiquitination. 'Lys-48'-linked polyubiquitination is the major form, 'Lys-6'-linked and 'Lys-11'-linked polyubiquitination also occur.; O-glycosylated. O-GlcNAcylation content is around 8.2%. There is reciprocal down-regulation of phosphorylation and O-GlcNAcylation. Phosphorylation on Ser-717 completely abolishes the O-GlcNAcylation on this site, while phosphorylation on Ser-713 and Ser-721 reduces O-GlcNAcylation by a factor of 2 and 4 respectively. O-GlcNAcylation on Ser-717 decreases the phosphorylation on Ser-721 by about 41.5%.; Glycation of PHF-tau, but not normal brain TAU/MAPT. Glycation is a non-enzymatic post-translational modification that involves a covalent linkage between a sugar and an amino group of a protein molecule forming ketoamine. Subsequent oxidation, fragmentation and/or cross-linking of ketoamine leads to the production of advanced glycation endproducts (AGES). Glycation may play a role in stabilizing PHF aggregation leading to tangle formation in AD.

SUBCELLULAR LOCATION

Cytoplasm, Cell membrane, Cell projection.

FUNCTION

Tau, also known as MAPT (microtubule-associated protein tau), MAPTL, MTBT1 or TAU, is a 758 amino acid protein that localizes to the cytoplasm, as well as to the cytoskeleton and the cell membrane, and contains four Tau/MAP repeats. Expressed in neuronal tissue and existing as multiple alternatively spliced isoforms, Tau functions to promote microtubule assembly and stability and is thought to be involved in the maintenance of neuronal polarity. Tau may also link microtubules with neural plasma membrane components and, in addition to its role in microtubule stability, is also necessary for cytoskeletal plasticity. Tau is highly subject to a variety of post-translational modifications, including phosphorylation on serine and threonine residues, polyubiquitination (and subsequent proteasomal degradation) and glycation of specific Tau isoforms. Defects in the gene encoding Tau are associated with Alzheimers disease, pallido-ponto-nigral degeneration (PPND), corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP).