PRODUCT CODE: EM21103

HSP90 Beta Monoclonal Antibody (EM21103)

Applications

  • WB

  • IHC-P

REACTIVITY

  • Human

  • Mouse

  • Rat

Western blot analysis of HSP90 beta on different cell lysates using anti- HSP90 beta antibody at 1/5000 dilution.<br />
Positive control: <br />
 Lane 1: Hela <br />
 Lane 2: NIH/3T3 <br />
 Lane 3: PC12 <br />
 Lane 4: 293T <br />
 Lane 5: HePG2 <br />
 Lane 6: COS-1 <br />
 Lane 7: Jurkat <br />
 Lane 8: A549 <br />
 Lane 9: Raji <br />
 Lane 10: Mouse heart tissue
  • Western blot analysis of HSP90 beta on different cell lysates using anti- HSP90 beta antibody at 1/5000 dilution.<br />
Positive control: <br />
 Lane 1: Hela <br />
 Lane 2: NIH/3T3 <br />
 Lane 3: PC12 <br />
 Lane 4: 293T <br />
 Lane 5: HePG2 <br />
 Lane 6: COS-1 <br />
 Lane 7: Jurkat <br />
 Lane 8: A549 <br />
 Lane 9: Raji <br />
 Lane 10: Mouse heart tissue
  • Immunohistochemical analysis of paraffin-embedded human colon carcinoma tissue using anti-HSP90 beta antibody. Counter stained with hematoxylin.
  • Immunohistochemical analysis of paraffin-embedded human tonsil tissue using anti-HSP90 beta antibody. Counter stained with hematoxylin.
  • Immunohistochemical analysis of paraffin-embedded mouse testis tissue using anti-HSP90 beta antibody. Counter stained with hematoxylin.
  • Immunohistochemical analysis of paraffin-embedded mouse brain tissue using anti-HSP90 beta antibody. Counter stained with hematoxylin.
Western blot analysis of HSP90 beta on different cell lysates using anti- HSP90 beta antibody at 1/5000 dilution.
Positive control:
Lane 1: Hela
Lane 2: NIH/3T3
Lane 3: PC12
Lane 4: 293T
Lane 5: HePG2
Lane 6: COS-1
Lane 7: Jurkat
Lane 8: A549
Lane 9: Raji
Lane 10: Mouse heart tissue

Applications

  • WB

  • IHC-P

REACTIVITY

  • Human

  • Mouse

  • Rat

SPECIFICATIONS

Product Type

Mouse monoclonal primary

Product Name

HSP90 Beta Monoclonal Antibody (EM21103)

Immunogen

Peptide

Host

Mouse

Positive Control

Hela, NIH/3T3, PC12, 293T, A431, COS-1, Jurkat, HepG2, A549, Raji, mouse brain tissue, mouse heart tissue, rat brain tissue , rat heart tissue,human colon carcinoma tissue,human tonsil tissue,mouse testis tissue.

Conjugation

Unconjugated

Clonality

Monoclonal

Clone Number

2-1-G3

PROPERTIES

Form

Liquid

Storage Condition

Store at +4C after thawing. Aliquot store at -20C or -80C. Avoid repeated freeze / thaw cycles.

Storage Buffer

1*PBS (pH7.4), 0.2% BSA, 40% Glycerol. Preservative: 0.05% Sodium Azide.

Concentration

2 ug/ul

PURIFICATION

Protein A purified.

MOLECULAR WEIGHT

84 kDa

Isotype

IgG2a

APPLICATION DILUTION

  • WB

  • 1:5,000

  • IHC-P

  • 1:100-1:200

TARGET

UNIPROT #

PROTEIN NAME

Heat shock protein HSP 90-beta

GENE NAME

HSP90AB1

SYNONYMS

HSP 90,HSP 84

SEQUENCE SIMILARITIES

Belongs to the heat shock protein 90 family.

POST-TRANSLATIONAL MODIFICATION

Ubiquitinated in the presence of STUB1-UBE2D1 complex (in vitro).; ISGylated.; S-nitrosylated; negatively regulates the ATPase activity.; Phosphorylation at Tyr-301 by SRC is induced by lipopolysaccharide. Phosphorylation at Ser-226 and Ser-255 inhibits AHR interaction.; Methylated by SMYD2; facilitates dimerization and chaperone complex formation; promotes cancer cell proliferation.; Cleaved following oxidative stress resulting in HSP90AB1 protein radicals formation; disrupts the chaperoning function and the degradation of its client proteins.

SUBCELLULAR LOCATION

Cytoplasm. Melanosome. Nucleus. Secreted. Cell membrane. Note=Identified by mass spectrometry in melanosome fractions from stage I to stage IV. Translocates with BIRC2 from the nucleus to the cytoplasm during differentiation. Secreted when associated with TGFB1 processed form (LAP).

FUNCTION

Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle. Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. In the first place, they alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression. Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation. Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery. Main chaperone that is involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription.